Methods
This page provides an auto-generated summary of synloc’s API.
- class synloc.LocalCov(data: DataFrame, K: int = 30, normalize: bool = True, clipping: bool = True, Args_NearestNeighbors: dict = {})
This is a method for clusterResampler class to create synthetic samples from the multivariate normal distribution with the estimated covariance matrix.
- Parameters
data (pandas.DataFrame) – Original data set to be synthesized
K (int, optional) – The number of the nearest neighbors used to create synthetic samples, defaults to 30
normalize (bool, optional) – Normalize sample before defining clusters, defaults to True
clipping (bool, optional) – trim values greater (smaller) than the maximum (minimum) for each variable, defaults to True
Args_NearestNeighbors (dict, optional) – NearestNeighbors function arguments can be specified if needed. See scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html , defaults to {}
- method(subsample: DataFrame)
Estimates covariance matrix and draw samples from the estimated multivariate normal distribution.
- Parameters
subsample (pandas.DataFrame) – A subsample defined by the kNNResampler class.
- Returns
Synthetic values.
- Return type
numpy.darray
- round_integers(integer_columns: list, stochastic: bool = True) None
Rounds variables to integers.
- Parameters
integer_columns (list) – The list of variables to be rounded.
stochastic (bool, optional) – Variables are rounded by a stochastic process, defaults to True
- class synloc.LocalFPCA(data: DataFrame, n_fpca_components: int = 2, K: int = 30, normalize: bool = True, clipping: bool = True, Args_NearestNeighbors: dict = {})
It is a method for kNNResampler class. The method is based on the FPCADataGenerator class from the synthia package.
- Parameters
data (pandas.DataFrame) – Original data set to be synthesized
n_fpca_components (int, optional) – The number of dimensions after PCA, defaults to 2
K (int, optional) – The number of the nearest neighbors used to create synthetic samples, defaults to 30
normalize (bool, optional) – Normalize sample before defining clusters, defaults to True
clipping (bool, optional) – trim values greater (smaller) than the maximum (minimum) for each variable, defaults to True
Args_NearestNeighbors (dict, optional) – NearestNeighbors function arguments can be specified if needed. See scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html , defaults to {}
- method(data)
Creates syntehtic values using FPCADataGenerator class from the synthia package.
- Parameters
data (pandas.DataFrame) – A subsample defined by the kNNResampler class.
- Returns
Synthetic values.
- Return type
numpy.darray
- round_integers(integer_columns: list, stochastic: bool = True)
Rounds variables to integers.
- Parameters
integer_columns (list) – The list of variables to be rounded.
stochastic (bool, optional) – Variables are rounded by a stochastic process, defaults to True
- class synloc.LocalGaussianCopula(data: DataFrame, K: int = 30, normalize: bool = True, clipping: bool = True, Args_NearestNeighbors: dict = {})
It is a method for kNNResampler class to create synthetic values using gaussian copula.
- Parameters
data (pandas.DataFrame) – Original data set to be synthesized
K (int, optional) – The number of the nearest neighbors used to create synthetic samples, defaults to 30
normalize (bool, optional) – Normalize sample before defining clusters, defaults to True
clipping (bool, optional) – trim values greater (smaller) than the maximum (minimum) for each variable, defaults to True
Args_NearestNeighbors (dict, optional) – NearestNeighbors function arguments can be specified if needed. See scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html , defaults to {}
- method(subsample: DataFrame)
Creating synthetic values using Gaussian copula.
- Parameters
subsample (pandas.DataFrame) – A subsample defined by the kNNResampler class.
- Returns
Synthetic values.
- Return type
numpy.darray
- round_integers(integer_columns: list, stochastic: bool = True)
Rounds variables to integers.
- Parameters
integer_columns (list) – The list of variables to be rounded.
stochastic (bool, optional) – Variables are rounded by a stochastic process, defaults to True
- class synloc.clusterCov(data: DataFrame, n_clusters=8, size_min: Optional[int] = None, size_max: Optional[int] = None, normalize: bool = True, clipping: bool = True)
clusterCov is a method for clusterResampler class to create synthetic values from the multivariate normal distribution with the covariance matrix estimated from the clusters.
- Parameters
data (pandas.DataFrame) – Original data set to be synthesized
n_clusters (int, optional) – The number of clusters, defaults to 8
size_min (int, optional) – Required minimum cluster size, defaults to None
size_max (int, optional) – Required maximum cluster size, defaults to None
normalize (bool, optional) – Normalize sample before defining clusters, defaults to True
clipping (bool, optional) – trim values greater (smaller) than the maximum (minimum) for each variable, defaults to True
- method(cluster: DataFrame, size: int)
Creating synthetic values from the estimated multivariate normal distribution.
- Parameters
cluster (pandas.DataFrame) – Cluster data
size (int) – Required number of synthetic observations. Size is equal to the number of observations in the cluster if not specified.
- Returns
Synthetic values
- Return type
pandas.DataFrame
- class synloc.clusterGaussCopula(data: DataFrame, n_clusters=8, size_min: Optional[int] = None, size_max: Optional[int] = None, normalize: bool = True, clipping: bool = True)
clusterGaussCopula is a method for clusterResampler class to create synthetic values from Gaussian copula.
- Parameters
data (pandas.DataFrame) – Original data set to be synthesized
n_clusters (int, optional) – The number of clusters, defaults to 8
size_min (int, optional) – Required minimum cluster size, defaults to None
size_max (int, optional) – Required maximum cluster size, defaults to None
normalize (bool, optional) – Normalize sample before defining clusters, defaults to True
clipping (bool, optional) – trim values greater (smaller) than the maximum (minimum) for each variable, defaults to True
- method(cluster: DataFrame, size: int)
Creating synthetic values from Gaussian copula.
- Parameters
cluster (pandas.DataFrame) – Cluster data
size (int) – Required number of synthetic observations. Size is equal to the number of observations in the cluster if not specified.
- Returns
Synthetic values
- Return type
pandas.DataFrame