{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Cluster Resampler\n", "\n", "This notebook shows how `clusterResampler` methods are used to create synthetic samples. `clusterResampler` relies on a Python package [k-means-constrained](https://pypi.org/project/k-means-constrained/) to cluster the data. There are two methods demonstrated in this notebook. The first one draws synthetic values from a multivariate normal distribution. The second one draws synthetic values from a gaussian copula. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from synloc import sample_circulars_xy, clusterCov, clusterGaussCopula" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | x | \n", "y | \n", "
---|---|---|
0 | \n", "-7.439214 | \n", "-6.410053 | \n", "
1 | \n", "-16.626527 | \n", "-10.295054 | \n", "
2 | \n", "6.669369 | \n", "19.920039 | \n", "
3 | \n", "16.274841 | \n", "5.968006 | \n", "
4 | \n", "7.181718 | \n", "-2.006049 | \n", "
\n", " | x | \n", "y | \n", "
---|---|---|
0 | \n", "-10.447402 | \n", "7.088786 | \n", "
1 | \n", "-4.048904 | \n", "15.440417 | \n", "
2 | \n", "-8.741493 | \n", "9.510548 | \n", "
3 | \n", "-7.061347 | \n", "14.254181 | \n", "
4 | \n", "-5.263386 | \n", "16.549055 | \n", "
... | \n", "... | \n", "... | \n", "
31 | \n", "-6.509278 | \n", "-25.342745 | \n", "
32 | \n", "-4.047308 | \n", "-21.856602 | \n", "
33 | \n", "-3.537834 | \n", "-23.911015 | \n", "
34 | \n", "-4.728510 | \n", "-21.240394 | \n", "
35 | \n", "-3.581509 | \n", "-24.209864 | \n", "
1000 rows × 2 columns
\n", "\n", " | x | \n", "y | \n", "
---|---|---|
0 | \n", "0.705895 | \n", "21.506721 | \n", "
1 | \n", "7.240778 | \n", "20.261066 | \n", "
2 | \n", "5.910154 | \n", "21.063820 | \n", "
3 | \n", "6.170739 | \n", "20.511732 | \n", "
4 | \n", "0.763095 | \n", "21.702028 | \n", "
... | \n", "... | \n", "... | \n", "
33 | \n", "2.251692 | \n", "-17.754208 | \n", "
34 | \n", "3.807215 | \n", "-18.830935 | \n", "
35 | \n", "2.790674 | \n", "-21.364349 | \n", "
36 | \n", "0.264260 | \n", "-19.779841 | \n", "
37 | \n", "-1.980704 | \n", "-20.683878 | \n", "
1000 rows × 2 columns
\n", "