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Introduction
This paper proposes to use the Double Score Matching (DSM) method to do

mass-imputation and presents an application to make inferences with a non-

representative sample. DSM is a nearest neighbor algorithm that uses two balanc-

ing scores instead of covariates to reduce the dimension of the distance metric.

As long as one of two balance score models is correctly specified, DSM mass-

imputation is a consistent estimator. This property is known as “double robust-

ness.” Moreover, DSM performs better than recently proposed double robust

estimators when the data generating process has nonlinear confounders.

Mass-Imputation
Mass-imputation is the process of imputing a variable with predicted values. The

predictions require auxiliary data/sample. The auxiliary sample is assumed to be

a nonprobability (non-representative) sample. The paper considers two specific

types of samples that are used in estimation:

Sample Type d Y X Population Representative

Probability Sample (B) 3 7 3 3

Nonprobability Sample (A) 7 3 3 7

Note: d denotes the sample weights, Y is variable of interest, and X is a k−di-

mensional covariate.

Objectives

1. Consistent imputation of Y ∈ B, i.e., consistent estimation of

µB =
∑
i∈B

E[Yi|Xi].

2. Making inference with the nonprobability sample, i.e., consistent estimation of

µ =
∑
i∈F

E[Yi|Xi],

where F denotes the population.

3. Constructing valid confidence intervals for µB and µ estimates. It is non-trivial

to establish asymptotic results because matching estimators make

non-smooth predictions. Also, It is known that the naive bootstrapping fails

with the matching estimators [2].

Dimension Reduction with Double Score Matching

Conventionally, nearest neighbors matching estimators are used to match ob-

servations based on Euclidean distances between covariates Xi. The predic-

tion/imputation is the average of the best M matches. The curse of dimension-

ality follows matching estimators when dimension of X , i.e., k is large. The

convergence rate of the matching estimator is Op(N−1/2) when k ≤ 2 and

Op(N−1/k) when k > 2 [1].

Double Score Matching solves this problem by replacing X with estimated

balance scores to reduce dimension.

1. Prognostic Score: E[Yi|Xi],
2. Propensity Score: Prob(I(i ∈ A)|Xi).

The use of estimated two balance scores (Ẑ) as a distance metric in matching

ensures that the estimator converges sufficiently fast, i.e., Op(N−1/2). There-
fore, we require functional form assumptions both for prognostic score and

propensity score models.

Nonprobability (Non-representative) Samples
While mass-imputation could be implemented in different context, the paper fo-

cuses on nonprobability samples because nonprobability samples are becoming

the dominant type of data, e.g., big data, internet surveys, and samples variables

with large proportion of missing values. Also, the non-representative is a major

concern in many economic studies.

An Example: Selection Mechanisms in COVID-19 Samples

Sample Selection Mechanism: People with COVID-19 symptoms are more likely to

get a test (and hence more likely to be in the sample).

Population Sample

Sampling

No Disease
Disease with no symptoms
Disease with symptoms

We cannot directly infer, for instance, the mortality rate from the available sample.

Solution: Transferring variable of interest from biased sample to a representative

sample (Mass-imputation).

Results
I show that Double Score Matching mass-imputation is double robust, i.e., mass-

imputation and population inferences are asymptotically consistent as long as

prognostic score or propensity score models are correctly specified. The asymp-

totic results show that:

µ̂B − µB = Op(N−1/2) and µ̂ − µ = Op(N−1/2)

where µ̂B and µ̂ denote DSM estimates respectively for sample B mean and

population. The confidence intervals are constructed using a wild bootstrapping

approach [5].

Beyond Double Robustness:
The Violation of The ConsistencyAssumptions

When the consistency assumption fails, DSM mass-imputation is robust under

certain scenarios, unlike other double robust inference methods. The consis-

tency assumptions could fail, for example, if the data generating process is

nonlinear. The robustness of DSM follows from the fact that the matching

estimators are nonparametric, and hence DSM is a semi-parametric estimator.

Consequently, DSM is less sensitive to model misspecifications because model

predictions are merely used for matching observations.

Simulations
We simulate a super-population (F ) and drawprobability sample (B) and nonprob-

ability sample (A) from F . The first simulation shows the “double robustness” of

mass-imputation and population inferences. The second simulations shows that

DSM performs well when the consistency assumptions fail due to nonlinear con-

founders. The simulations compare models in terms of Relative Bias (RB) and

Mean Squared Error (MSE).

Results: Double Robustness
There are four possible scenarios for the prognostic and propensity score models’

specifications, e.g., (TF) implies prognostic score model is a TRUE (T) specification

and propensity score model is a FALSE (F) specification.

Estimator Mean RB (%) MSE

Population Mean 9.278 - -

Sample A Mean 11.906 28.331 6.949

Sample B Mean 10.120 - -

DSM Mass-imputation (TT) 10.100 -0.193 0.399

DSM Mass-imputation (FT) 10.189 0.688 0.414

DSM Mass-imputation (TF) 10.111 -0.086 0.393

DSM Mass-imputation (FF) 12.386 22.403 5.542

DSM Population Inference (TT) 9.268 -0.105 0.407

DSM Population Inference (FT) 9.330 0.564 0.397

DSM Population Inference (TF) 9.282 0.044 0.380

DSM Population Inference (FF) 11.577 24.777 5.642

Results: Beyond Double Robustness
This simulation compares DSM with a recently proposed Double Robust Estima-

tor (DRE) [4] when the DGP contains nonlinear confounders, i.e., the consistency

assumptions fail. All models are misspecified due to nonlinearity, but some mod-

els, in addition, are misspecified due to omitted variable bias (denoted by F).

Estimator Mean RB (%) MSE

DRE Population Inference (TT) 9.600 3.466 0.395

DRE Population Inference (FT) 9.819 5.827 0.621

DRE Population Inference (TF) 9.926 6.983 0.695

DRE Population Inference (FF) 11.665 25.724 5.955

DSM Population Inference (TT) 9.392 1.229 0.409

DSM Population Inference (FT) 9.400 1.315 0.416

DSM Population Inference (TF) 9.401 1.321 0.415

DSM Population Inference (FF) 11.559 24.586 5.567

Concluding Remarks

The proposed method achieves good robustness properties and prevents

bias from inflating when the consistency assumptions fail.

It has been shown that the proposed Wild Bootstrapping approach

produces valid confidence intervals. Furthermore, the constructed

confidence intervals are double robust as the estimator itself.

The theoretical findings could be extended into different context such as

Average Treatment Effect Estimation [3] and Missing Value Imputation.

(The latter is currently work-in-progress.)
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